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Abstract

Small changes in volume are observed in plutonium, and several potential mechanisms have been proposed. In this
paper, we provide a detailed theoretical analysis of volume changes due to the accumulation of helium and daughter prod-
ucts generated in the radioactive decay of plutonium. It is shown that volume changes in d-phase plutonium caused by Am,
U, and Np are significant and compensate to some degree the swelling from helium bubble formation and growth. Com-
parison with experimental results obtained so far suggests that the decay products dominate the rate of volumetric change
in the long run.
� 2006 Published by Elsevier B.V.

PACS: 61.80.Az; 61.82.Bg; 81.30.Bx; 82.60.Lf; 89.20.Dd
1. Introduction

The radioactive decay of plutonium will over
time change the composition of the material and
also lead to slight changes in its specific volume.
There are several possible contributions to dimen-
sional changes [1]. First, at ambient temperatures
the lattice parameter of gallium stabilized d-Pu
increases and reaches a new value after 2–3 years.
As Chebotarev and Utkina have reported [3], this
transient increase in lattice parameter increases with
the gallium content, and it can be reversed by heat-
ing the material; after returning to ambient temper-
ature, the lattice parameter increases again to its
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characteristic saturation value. Second, the accumu-
lation of helium from the a-decay in the form of
bubbles has been observed by transmission electron
microscopy [2]. These bubbles are known to expand
the external volume of the material that contains
them. Third, a plutonium atom that undergoes a
radioactive decay changes to a different actinide
daughter product with a different atomic volume.
A forth contribution may arise from voids created
at high radiation doses. However, in samples with
radiation damages up to 4 dpa, no evidence for void
swelling has so far been found when examined by
transmission electron microscopy [2]. Finally, pluto-
nium is marginally kept stable in its d-phase at
ambient temperatures by small additions of gallium.
If part of the d-phase were to transform to a differ-
ent phase, most likely to the a-phase, a volume
contraction would occur. Long-term experimental
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studies are in progress to detect and measure pre-
cisely the sum of all possible dimensional changes,
and some data have recently been published on a
plutonium–gallium alloy enriched with the isotope
238Pu [4]. Theoretical studies, however, must be car-
ried out to quantify the different contributions.
Here, we report only on our evaluation of the
dimensional changes produced by all the decay
products, including helium. The initial expansion
of the lattice parameter that is reversible upon
heating will be the subject of a forthcoming paper
[26].

We begin, in Section 2, with a discussion of a typ-
ical isotopic composition of plutonium as employed
in nuclear weapons, and of the various radioactive
decay channels associated with the isotopes. Next,
we describe in section 3 our determination of the
partial molar volumes of the actinide decay prod-
ucts in the d-phase of plutonium, followed in
Section 4 by an evaluation of swelling caused by
helium bubbles. In Section 5, we report our predic-
tions of volume changes and compare it with exper-
imental results. Our conclusions are briefly
summarized in Section 6.

2. Production of actinide daughters and helium

Weapons-grade plutonium consists of a number
of different isotopes. They are listed in Table 1
together with typical values of their initial concen-
trations in the second column. Actual concentra-
tions vary somewhat for different weapon systems.
In particular, the isotope 241Pu has often decayed
to 241Am to some extent by the time a weapon is
manufactured. Table 1 gives the decay chains in
each row, starting with the parent nucleus on the
Table 1
Radioactive decay characteristics of plutonium isotopes

Parent isotope Abundance (%) Decay channel Half-life

WG Spikeda

238Pu 0.02 7.38 a 87
Fission 5 · 1010

239Pu 93.6 86.2 a 24390
Fission 5 · 1015

240Pu 5.9 5.52 a 6580
Fission 1.3 · 10

241Pu 0.44 0.15 b 14.63
a (<.01%) 14.63

242Pu 0.04 0.057 a 3.8 · 10
Fission 7.4 · 10

a WG stands for weapons-grade, and Spiked for material enriched in
left and proceeding to the final stable nucleus on
the very right. Each of the isotopes has two decay
channels. With the exception of 241Pu, there is a a-
decay leading to an intermediate uranium daughter.
This daughter product will eventually decay by
another a-emission to thorium. However, the half-
life of the uranium daughter is so long that we
may assume for the present analysis that it repre-
sents the final product. The other decay channel is
the spontaneous fission of the plutonium nucleus.
Again, however, the half-life for this nuclear reac-
tion is so long that we may safely ignore it from
further considerations. We note that the a-decay
of 238Pu has a short half-life of only 87 years. As a
result, even small amounts of this isotope contribute
significantly to the overall production of helium and
radiation damage in nuclear stockpile materials.

As already mentioned, 241Pu has an exceptional
decay scheme and with a relatively short half-life
of merely 14.63 years it decays either by electron
or a-emission. However, the latter has a probability
of less than 0.01%, and we may neglect this decay
channel. The b-decay leads to an intermediate
241Am nucleus which further decays with a half-life
of 458 years to 237Np.

We see that there are then only three daughter
products, namely U, Am, and Np which need to
be considered as solute elements affecting the alloy
chemistry and the lattice parameter. Helium, being
the other major decay product must be treated
differently and separately.

Let us denote with x0
I the initial atomic fraction

or abundance of the isotope with mass I, and with
kI the decay constant. The atomic fractions of
daughter product can then easily be evaluated [5]
and are given by the equations
years Daughter
isotope

Decay
channel

Half-life
years

End
product

234U a 2.5 · 105 230Th

235U a 7 · 108 231Th

236U a 2.4 · 107 232Th
11

241Am a 458 237Np
237U b 6.7 days 237Np

5 238U a 5.4 · 109 230Th
10

238Pu.
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xUðtÞ ¼ x0
238ð1� e�k238tÞ þ x0

239ð1� e�k239tÞ
þ x0

240ð1� e�k240tÞ þ x0
242ð1� e�k242tÞ

ffi ðx0
238k238 þ x0

239k239 þ x0
240k240 þ x0

242k242Þt;
ð1Þ

xAmðtÞ ¼ x0
241

k241

k241 � kAm

ðe�kAmt � e�k241tÞ; ð2Þ

xNpðtÞ ¼ x0
241

1

k241 � kAm

� fk241ð1� e�kAm tÞ � kAmð1� e�k241tÞg:
ð3Þ

Given the long half-lives of the plutonium isotopes
that decay to uranium, the increase in U is for all
practical purposes a linear function of time, as is
indicated in the second part of Eq. (1).

A helium atom is born in the decay sequence of
every Pu isotope. However, for the 241Pu decay,
there is a temporary delay because the a-decay of
Am is preceded by b-decay. The helium concentra-
tion is equal to the concentration of uranium and
neptunium daughter products. Hence the equation

xHeðtÞ ¼ xUðtÞ þ xNpðtÞ: ð4Þ
Eq. (4) can easily be calculated using Eqs. (1) and (3).

The results are shown in Fig. 1 for the isotope
abundances listed in the second column of Table 1.
The delay of the helium production from 241Pu is
seen when the asymptotic production rate is extrap-
olated backwards as indicated by the dashed line.
Disregarding this minor deviation we note that about
400 at. ppm (atomic parts per million) of helium is
produced per decade in weapons-grade plutonium.
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Fig. 1. Helium concentration as a function of time in weapons-
grade plutonium, in atomic parts per million, for the isotope
composition listed in Table 1 under column ‘WG’.
Let us denote by V I the partial molar volume of
the daughter product which stems from the pluto-
nium isotope with mass number I. The change in
volume of the parent material, the Pu–Ga alloy in
the d-phase, due to the accumulation of other acti-
nide daughter products, is then given by

DV
V 0

����
A

¼ xUðtÞ
V U � V Pu

V Pu

þ xAmðtÞ
V Am � V Pu

V Pu

þ xNpðtÞ
V Np � V Pu

V Pu

: ð5Þ

The partial molar volumes of the three daughter
products in d-Pu are not all known. For Am, it
can be obtained from experimental lattice-parame-
ter measurements made on Pu–Am binary alloys [6].

3. Determination of partial molar volumes

In general, if V(xI) denotes the molar volume of a
binary alloy with a daughter product content of xI

atomic fractions, the partial molar volumes for the
two elements in a binary alloy are defined as

V Pu ¼ V ðxIÞ � xI
dV
dxI

� �
;

V I ¼ V ðxIÞ þ ð1� xIÞ
dV
dxI

� �
:

ð6Þ

From these two equations we can form a parameter
which we shall call the dilatation of the solute I in
d-Pu

V I � V Pu

V ðxIÞ
¼ 1

V ðxIÞ
dV
dxI

� �
: ð7Þ

In the limit of infinite dilution, xI! 0, the partial
molar volume of plutonium becomes equal to the
molar volume, V 0

Pu, of pure Pu in the particular
phase of the alloy, and the dilatation is

V I

V 0
Pu

� 1 ¼ 1

V 0
Pu

dV
dxI

� �
xI¼0

: ð8Þ

These are the parameters needed to evaluate the
volume change of Eq. (5).

For cubic crystal phases the partial molar vol-
umes are related to the lattice parameter a(xI), and
the dilatation is given by

V I � V Pu

V Pu

¼ 3

aðxIÞ
da
dxI

: ð9Þ

First-principles electronic structure methods can
also be used to determine partial molar volumes.
In the present paper, we employ two different



Fig. 2. Volume change in Pu–Am alloys with increasing Am
content relative to the partial molar volume of d-plutonium. The
curve is a fit to the experimental data in Ref. [6].
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computational techniques. The most accurate meth-
od, which is also the most computer intensive, is an
all-electron, full-relativistic (spin–orbit coupling is
included), full potential linear muffin–tin orbitals
(FPLMTO) method [7,8]. In the FPLMTO method
one can approximate the Pu1�xIx (I = Am, U, and
Np) alloy with a large super-cell or an ordered com-
pound. Because the ordered compound involves far
less atoms, this is the more efficient approach and is
used here. Söderlind [9] found that antiferromag-
netic (AF) L10 type structure is the most energeti-
cally stable magnetic configuration for d-Pu at
T = 0 K. We used AF configuration for d-Pu as well
as for PuX compounds (Pu3I (L12) and PuI (L10)) in
the FPLMTO calculations. The equilibrium density
(molar volume V(xI)) was obtained from a Murna-
ghan fit [10] to about ten total energies calculated
as a function of the atomic volume. The energy
minimum determines then the molar volume V(xI).
The assumption of antiferromagnetic spin ordering
encounters widespread concerns among reviewers
and readers alike in view of the fact that no magne-
tism is found in plutonium. While this is too com-
plex an issue to deal with in this paper, we explain
in Appendix A why this assumption can be made.

The FPLMTO method is very accurate but has
two limitations. First, if n atoms are solute atoms
and (N � n) are solvent atoms, then x = n/N can
only assume discrete values. Second, periodic
boundary conditions for the super-cell calculations
imply an ordered compound rather than a random
solution alloy. Furthermore, finding the volume of
the super-cell with the lowest energy for an alloy
does not eliminate all forces on the periodic bound-
aries. However, as is shown in the Appendix B, it
will determine the correct molar volume of the alloy.

To allow calculations for solutes at arbitrary
concentrations, another theoretical approach is
employed. The calculations we have referred to as
KKR–ASA are performed using the scalar-relativis-
tic (spin–orbit coupling is neglected) spin-polarized
Green’s function technique based on the Kor-
ringa–Kohn–Rostoker (KKR) method within the
atomic sphere approximation (ASA) [11,12]. The
effect of compositional and magnetic disorder is
treated by means of the coherent potential approx-
imation (CPA) [13]. As was suggested in Ref.
[14,15], at elevated temperatures d-Pu is argued to
be a disordered magnet or paramagnetic (PM) that
upon cooling undergoes transformation to the AF
structure with a mechanical destabilization and
phase transition to a lower symmetry phase as the
result. The PM state of d-Pu and its alloys is repre-
sented by the disordered local moment (DLM) [16]
incorporated within the CPA.

Americium and plutonium form a continuous
solid solution in the face-centered-cubic (fcc) lattice
structure. Lattice parameters for this binary alloy
have been measured by Ellinger et al. [6], and the
dilatation as determined from Eq. (9) is shown in
Fig. 2. Landa and Söderlind [17] carried out first-
principle calculations on Pu–Am alloys and also
obtained values for the dilatation as shown in
Fig. 2. The agreement between the computed and
the experimental values for Am concentrations of
20% or less is excellent, and it confirms the proof
in the Appendix B that the volume change caused
by solutes in a finite solid are indeed equal to the
change computed with periodic boundary
conditions.

Fcc alloys of Pu–U or of Pu–Np do not exist at
ambient conditions and their lattice parameters
can therefore not be determined experimentally.
Instead we have performed calculations for these
alloys and the dilatations are shown in Figs. 3 and 4.

The dilatations for dilute solute concentrations
are listed in Table 2.

These values strictly apply only to the corre-
sponding binary alloys. Yet we intend to use them
also for Pu–Ga–Am–U–Np alloys containing super-
saturations of vacancies and self-interstitials. First,
let us consider the effect of gallium. In a Pu–Ga
alloy with 3 at.% gallium, the volume per atom is



Fig. 3. Volume change in Pu–U alloys with increasing U content
relative to the partial molar volume of d-plutonium.

Fig. 4. Volume change in Pu–Np alloys with increasing Np
content relative to the partial molar volume of d-plutonium.

Table 2
Dilatations for Am, U, and Np in d-Pu at infinite dilution

ðV I=V 0
PuÞ � 1 Experiment FPLMTO KKR–ASA

Am +0.2338 +0.2640 +0.2206
U �0.1920 �0.2480
Np �0.2240 �0.1763
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smaller by about 2% than the atomic volume of
plutonium in the pure d-phase. A correction of this
magnitude should be made to the parameters given
in Table 2. However, such a correction is small com-
pared to the 30% difference obtained with the two
computational methods. The mutual effect of the
other actinide solutes on their respective dilatation
values is even smaller since their combined concen-
tration remains below 0.5 at.%. The concentration
of vacancies or self-interstitials maintained by radi-
ation damage at ambient temperature is estimated
to be less than 0.1 appm, and it will not affect the
partial molar volume of solute atoms.

In summary, the concentrations of actinide
daughter products is so small that a linear superpo-
sition of their individual contributions to the density
is justified, and the effect of gallium can be elimi-
nated when computing relative changes in density
or volume, as expressed by Eq. (5).

4. The effect of helium on density

The helium generated by the a-decay either
resides in bubbles or is still in solution. The two
populations with concentrations xB

He and xS
He make

the following contribution to the volume change:

DV
V 0

����
He

¼ xB
HeðtÞ

V B
He

V 0
Pu

þ xS
HeðtÞ

V S
He

V 0
Pu

: ð10Þ

In a recent paper, Schwartz et al. [2] report on the
examination by transmission electron microscopy
of old plutonium samples ranging in age from 16
to 42 years. Measuring both bubble diameters and
bubble densities by transmission electron micros-
copy, the bubble volume fraction was determined
and found to increase linearly from 0.01% to
0.03%. The evolution of the bubble density was
modeled with rate equations describing the irrevers-
ible aggregation of diffusing helium atoms [18]. Pre-
dicted and observed bubble densities could be made
to agree by selecting an appropriate helium diffusion
coefficient. It was found that an activation energy
for helium migration of 0.72 eV resulted in the most
satisfactory agreement. A consequence of this
model is that very low concentrations of helium in
solution are predicted, after just a few months of
aging. For example, the helium in solution drops
to about 1 ppb (part per billion) at 300 K and to
about 1 ppm (part per million) at 200 K. We may
therefore neglect the second term in Eq. (10)
entirely, and assume that all the helium produced
resides in bubbles.

The ratio of the partial molar volumes of pluto-
nium and of helium in bubbles, i.e. V 0

Pu=V B
He, is

equal to the number of helium atoms which
occupy within a bubble the volume vacated by one
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weapons-grade plutonium (see main text).
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plutonium atom. This helium to vacancy ratio, or
He/Vac., is found to be between 2 and 3.

Two independent determinations of this ratio
have been made. First, the image of the bubble
diameters of about 1 nm as seen in the transmission
has been shown to be about 20% smaller than the
real diameters of such small bubbles [19]. As a
result, the bubble volume fraction, as computed
from the visible images, is larger by a factor of
1.73. When the known helium concentration in the
aged Pu samples is divided by this actual bubble
volume, a He/Vac. ratio between 2 and 3 is obtained.

The second determination of the helium density
in bubbles was obtained by Sterne et al. [20] with
positron annihilation lifetime measurements on old
plutonium samples and with first-principles calcula-
tions of annihilation rates of positrons trapped in
vacancy clusters, voids and helium bubbles. These
calculations have shown that calculated positron
lifetimes in old plutonium samples agree with the
measured values of 180–200 ps if the He/Vac. ratio
is between 2 and 3 for bubbles with diameters
between 1 and 2 nm, the sizes inferred from trans-
mission electron microscopy.

We note that values for He/Vac. of around 2
have been found for helium bubbles formed by tri-
tium decay in metals such as Pd [19], Nb, Lu, Zr,
V, Ta, Y, and Sc [21–23]. The somewhat smaller
number can be explained by the smaller atomic vol-
ume for these metals compared to the larger value of
0.025 nm3 for d-Pu.

5. Results

The total volume change can now be computed
as the sum of Eqs. (5) and (10). Let us first consider
the contribution to the volume change by the acti-
nide daughter products in weapons-grade material.
Eq. (5) gives the curves labeled as ‘Actinides’ in
Fig. 5. Here, the experimental value for the dilata-
tion of Am has been used in both cases. The
build-up of Am is the reason for the steep initial
volume increase. However, after about 30 years
the further generation of Am diminishes and the
production of uranium reverses the volume expan-
sion to a contraction. The two different predictions
arise predominantly from the different partial molar
volumes computed for U with the FPLMTO and
the KKR–ASA method. When we add the contribu-
tion of helium obtained with Eq. (10) and for He/
Vac. = 2.5, the upper curves shown in Fig. 5 are
obtained. We see that the volume increase caused
by helium bubbles is significantly compensated by
the volume contraction caused by the accumulation
of U and Np. To further assess the degree of this
compensation, we consider the greatest and smallest
volume change predicted. Choosing He/Vac. = 2
and the partial molar volumes computed with the
FPLMTO method gives the largest volume change,
while He/Vac. = 3 together with the KKR–ASA
results gives the lower volume change. Both are
shown in Fig. 6 after adding a constant value of
0.03% for the transient lattice parameter expansion,
estimated from the values obtained by Chebotarev
and Utkina [2]. We also display in Fig. 6 measured
volume changes of old plutonium samples extracted
from retired nuclear weapons [24]. These volume
changes are derived from two measurements of
immersion densities made many years apart and in
different laboratories. The initial density measure-
ments were performed on batches of plutonium
components after they were fabricated, but no
records were kept on the density of an individual
component. Therefore, the densities of the small
samples extracted from these components can only
be compared to the average initial density of a
batch. Hence the large scatter in the data. The com-
parison of our theoretical predictions with these
experimental data only demonstrates that there is
no discrepancy. But it does not constitute at all a
validation of the theory. More accurate measure-



-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50

Exp. data
Max
Min

V
o

lu
m

e 
ch

an
g

e,
 %

Years

Fig. 6. Relative volume change in weapons-grade plutonium.
The solid curve is a prediction for a helium density in bubbles of
two helium atoms per vacant site and the dashed curve for 3.
Experimental data are from samples extracted from retired
nuclear weapons. The wide scatter is explained in the text.

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5

2 cm
3 cm
FPLMTO  2 He/Vac.
KKR-ASA  2 He/Vac.

V
o

lu
m

e 
ch

an
g

e,
 %

Years

Fig. 7. Relative volume change for spiked material with a
composition given in Table 1 under column ‘Spiked’. A compar-
ison with predictions is made only for the steady state part of the
expansion after the transient, and assuming a helium density in
bubbles of two helium atoms per vacant site.

W.G. Wolfer et al. / Journal of Nuclear Materials 355 (2006) 21–29 27
ments are needed and are in progress using small
specimens of plutonium enriched in 238Pu.

Some preliminary data have recently been pub-
lished by Chung et al. [25] on length changes of plu-
tonium–gallium alloy samples that were made with
a 7.5 at.% of 238Pu, but were otherwise similar in
isotope composition as given in the third column
of Table 1. These so-called spiked samples acceler-
ate the overall a-decay by a factor of about 17.
We show in Fig. 7 the volume changes in two of
these samples aged at 35 �C, assuming that these
changes are three times the measured length
changes. The initial transient expansion will be
explained in a forthcoming paper. Here, we focus
on the steady state expansions which Chung et al.
[4] have also measured on samples held at 50 �C
and 65 �C and found to be very similar to those at
35 �C. As indicated in Fig. 7, the steady state expan-
sion can be fit to straight lines, and when extrapo-
lated to time zero, give a saturation value of
0.07% for the transient part of the volume expan-
sion. The sample with a length of 2 cm expands at
a lower rate than the 3 cm long sample. Possible rea-
sons for this difference are discussed by Chung et al.
[4].

The volume changes calculated for these spiked
samples turn out to be straight lines, and they are
shown in Fig. 7 displaced by the saturation value
for the transient expansion. The case shown is for
a helium density in bubbles of 2.0 He/Vac. It would
be possible to match the slope of the theoretical pre-
dictions by choosing a somewhat smaller value for
the helium density in bubbles. However, the experi-
mental slopes also have some uncertainty, as
discussed by Chung et al. [4], that needs to be
resolved before reaching a definite conclusion.

We note that spiked samples do not display the
steeper initial expansion due to Am as predicted
for weapons-grade material. The expansion in
spiked samples is dominated by the helium and U
productions from the decay of 238Pu, and both are
increasing almost linearly with time.

6. Summary and conclusions

We have presented a theoretical model for the
dimensional changes in aging d-Pu due to creation
of actinide daughter products and due to helium
accumulation. By performing first-principles calcu-
lations we have obtained the volume dilatation asso-
ciated with the existence of U, Np, and Am in d-Pu.
This, combined with the known half-life times of the
daughter products and the measured helium density
in bubbles, has enabled us to predict the volume
change in d-Pu as it ages. Our theoretical predic-
tions compare very favorably with experimental
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expansion data beyond the initial transient. This
initial transient is caused by a different process,
and it is treated in a forthcoming publication [26].
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Appendix A

Spin-polarized density functional theory (SP
DFT) has been applied to all the phases of pluto-
nium [27] with good success. It reproduces the
crystal structures and their densities as well as the
correct order of their ground state energies. These
calculations are performed assuming a particular
ordering of the spin magnetic moments of 5f-elec-
trons and varying the size of the unit cell. In this
manner, a minimum energy is found at a certain size
of the unit cell for the assumed spin configuration.
Next, other spin configurations are tested until the
one is found that gives the lowest possible energy.
Söderlind and Sadigh [27] have discovered a
remarkable empirical rule that enables one to pick
the optimum spin configuration, and very few spin
configurations need to be sampled. For the d-phase,
it is found that the anti-ferromagnetic spin configu-
ration with large spin magnetic moments generates
the lowest energy and the largest atomic volume.
The latter result agrees with experimental facts
while the former is in apparent contradiction with
all magnetic measurements. We have recently
extended [28] the application of SP DFT to gal-
lium-stabilized d-plutonium and the a 0-phase.
Again, very satisfactory results are obtained for
structural properties and thermodynamic properties
at absolute zero of temperature. Yet again, spin
magnetic moments are found and antiferromagnetic
ordering gives the lowest, and correct energies.

Clearly, there is something missing in the SP
DFT when one has to deal with magnetic proper-
ties, and this does not come as a surprise to theorists
who fully understand the foundation of this theory.
A more detailed discussion of the issues is given in
the introduction of Ref. [28]. Here, we can only
touch briefly on some of them:

1. Magnetic moments may be shielded by the
Kondo effect.
2. Correlated fluctuations of spin configurations
may eliminate a Curie–Weiss behavior.

3. Spin moments may be exactly cancelled by an
anti-parallel orbital moments with the same
magnitude.

Point 3 is strongly suggested by the SP DFT
whereas 1 or 2 cannot be addressed by this
approach. The theory must be supplemented, and
different models are being developed. However,
none of these has the rigorous foundation of the
SP DFT nor its successes in many areas of physics
and chemistry.

Appendix B

The introduction of a solute atom into a crystal
will in general produce elastic stresses rij(r) in the sur-
rounding host. For cubic crystals, the volume change
associated with these stresses is

R
given by [29]

DV ¼ 1

3K

ZZ
� xkrklnl dS þ

Z Z Z
xkfk d3r

� �
;

ðA:1Þ
where K is the bulk modulus, n is a unit vector on
the surface pointing outwards, and the stresses are
obtained by solving the equations of elasticity

rij;j þ fi ¼ 0: ðA:2Þ
The usual summation convention is used for re-
peated indices, and an index after a comma indi-
cates partial differentiation. The forces f(r) are the
ones generated by the solute atom on the surround-
ing host atoms prior to their relaxation. In a crystal
of finite extent, the stresses must also satisfy the
boundary condition rklnl = 0 on the external surface
of the crystal, and hence, the first integral vanishes.

For electronic structure calculations as per-
formed here, periodic boundary conditions are
employed, and the stresses are different than those
obtained in a finite crystal with stress-free bound-
aries. However, when the periodic cell volume is
changed such that the crystal energy reaches its min-
imum value, this implies that the sum of all forces
on the relaxed cell boundary vanishes. In this case,
the first integral in (A.1) vanishes again. Hence,
within the linear theory of elasticity, or the
harmonic approximation of crystals, the volume
change obtained with relaxed, periodic boundaries
is identical to the volume change in a finite crystal
with stress-free boundaries, even though the stresses
within the relaxed cell differ from those of the finite
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cell. Unfortunately, because of this difference, the
strain energies associated with the solute atoms
are not the same for the two cases.
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